Final Project: SAPS

Update #1 (as a video)

www.youtube.com/watch?v=SfPa0yr2JI8

This is a short video showing some of the software I have written so far. I figured a video would be faster and cleaner and able to stay on the blog. For the class update I will show the video and expand on and clarify a few things.

Enjoy the rest of your spring breaks,
Joel

 

p.s. I even gave it Categories this time! I dont enjoy giving posts categories :<

Pendulum mimicry

AUTO_GYM_PROTOTYPE

“2 robot interaction”

(Please take notice of my lil gut hangin’ out… this gym is for us lazy kids with bad posture)

 

 

 

The Discontented Robot

This little device made by David Bowen must be a version of Braitenberg’s vehicles that has attractive behavior to what it senses (either 2b or 4a). The nice thing about this little bot is that it synthesizes its own power from the source that it is attracted to. The set up is slightly different in that the object of desire is out of reach and so the bot ends up circling around the light source never satisfied.

WHERE DO ROBOTS BELONG?

 

The following work by Matthew Hebert (posted below) relates to a discussion Adam, Dakotah, Rob and I had regarding where art belongs…. I think we decided that, eventually, inevitably, it seems to always end up, as all life does, buried in a land pit somewhere. Personally, I don’t mind if stuff I make ends up in the garbage. But I don’t really want to get into a discussion about whether art is “wasteful” or not, or whether it should be “useful” or not.

Instead, let’s just check out this project that might excite Adam, since it combines robotics with design & “utilitarian” shit for your home… you know, furniture.

 

^    This table is kind of “whimsical” (in a when-robotics-hits-Crate-&-Barrel sort of way?). But the designer is obviously a theory dork (<- no negative connotation), since here we see one of Braitenberg’s vehicles!  Maybe 2a style, mentioned on p.6?  Though you might not be able to tell from this not very revealing video, these little robots, imprisoned between two sheets of glass, move in the sun, and stay still in the “shade.” Their motors are most likely attached to light sensors. This creates a nice effect when you put something down on the coffee table, since they will flock to it and hide under it. Would I put this in my home if someone gave it to me? Sure. (But as Bob Bingham would ask, “Is it art yet?”)

Here’s another piece based on simple Braiteneberg architectures: a bench that moves itself into the sun (using light sensors in the front, back, and on both sides, as well as a microcontroller). These benches have solar panels on their seats that charge their battery (except, I guess, when someone’s sitting on one…hmmm….)   Watch out, this video is rather lengthy.

[Do we always have to use that Strauss composition from 2001 when introducing a monolithic design?][yes]

 

Coming from the “art” perspective: I think these projects could be more interesting if they complicated the nature of braitenberg architectures, perhaps simultaneously complicating the notion of utilitarian furniture. What if these devices were structured not to be useful? If this furniture made use of slightly extended models of braitenbergian forms (see the Lambrinos / Scheier article)… the emergent behaviors might appear more complex. This could get really weird and interesting, if we’re talking about furniture that is reacting to human use. Incorporating “artificial” learning, or the type of seemingly socially intelligent behaviors discussed in the article we read about folk-psychology might turn a table or a chair into something we really have to think about interacting with…. Heidegger would go bananas.

 

And last, this Hebert guy takes a stab at “art” !!

After all, if there’s one way to be SURE you’re making art …. it’s by putting it in a museum!

This apparently was a commission from the San Diego Museum of Art in 2011 for a weekly series themed around the topic of “what a city needs.”  Here, Hebert says he is approaching this theme “from an interest in power infrastructure and it’s critical importance to the city,” in relation to the often geographical remoteness of most of those forms of power. (Which apparently is especially true in San Diego). Hebert took public domain models from the Google SketchUp library, 3D printed them in ABS plastic, wired electronics to them, and placed them in the museum in what we MIGHT call “non-traditional” locations. Sounds like a well-followed recipe right out o’ the ol’ “art” cookbook to me!

 

 

 

 

 

 

Robotic Quintet Composes And Plays Its Own Music

This robot created by Festo listens to a piece of music breaking each note down into pitch, duration, and intensity. It then plugs that information into various algorithms derived from Conway’s “Game of Life” and creates a new composition while listening to one another producing an improv performance. Conway’s “Game of Life” put simply is a 2d environment where cells(pixels) react to neighboring cells based on rules.

They are:
Any live cell with fewer than two live neighbours dies, as if caused by under-population.
Any live cell with two or three live neighbours lives on to the next generation.
Any live cell with more than three live neighbours dies, as if by overcrowding.
Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

This algorithm tends to evolve as time passes and created in an attempt to simulate life.

This robot essentially mimics how composers take a musical motif and evolve it over the life of the piece. The robot sets the sensory information from the music played to it as the initial condition or motif and lets the algorithm change it. Since western music is highly mathematical, robots are naturals. I would say this robot has more characteristics human/animal behavior in Wiener’s example of the music box and the kitten. Unlike the music box this robot performs in accordance with a pattern yet this pattern is directly effected by its past.

IOIO-OTG: Android + physical computing

Hardware,Sensors,Shopping — Ali Momeni @ 6:16 pm

The IOIO-OTG is finally here!

 

IOIO-OTG

In short, this development board allows you to interface with the physical world (sensors, actuators) using an Android device as the computational brain. The major improvement between this and the 1st/original IOIO board is that the IOIO-OTG can also interface with your Windows, Linux or OS X machine, and soon with the RaspberryPi (under “Coming Up”).

It’s a rather capable I/O board, featuring:

  • USB-OTG dual-role (host, device).
  • Input voltage: 5V-15V, from external source or through USB (when connected to a computer).
  • Output voltage: 5V, up to 3A (!), 3.3V, up to 500mA.
  • 46 I/O pins (digital I/O), built-in pull-ups / pull-downs / open-drain on all pins.
  • 16 Analog inputs.
  • 9 PWM (for driving servos, DC motors, dimming LEDs, etc).
  • 4 UART.
  • 3 TWI (I2C, SMBUS).
  • 3 SPI.
  • 6 Pulse Input (precise pulse-width / frequency measurement).
  • USB current limiting when acting as USB host (useful in Android mode).
  • Switch for forcing host mode (for using non-standard USB cables, which are more common than the standard ones…)
  • On-board LED under user control.

Here’s everything you need to know:

2 Sensors, 2 Actuators

Assignment,Audio,Hardware,Max,Sensors,Software,Submission — Robb Godshaw @ 1:59 pm

twiddleyourownknobsMore later..

Laser Clock

Assignment,Hardware,Max,Sensors,Submission — Dakotah @ 6:09 am

 

This is a laser pendulum. The motor driving the pendulum turns on when the laser is blocked from contacting photo sensor. Each time the laser hits the sensor the motor switches direction.
 

Next Page »
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.
(c) 2024 Advanced Studio: Critical Robotics – useless robot, uncanny gesture | powered by WordPress with Barecity