
TOWARD UNDERSTANDING HUMAN-COMPUTER INTERACTION IN 
COMPOSING THE INSTRUMENT 

Rebecca Fiebrink1, Daniel Trueman2, Cameron Britt2, Michelle Nagai2, Konrad Kaczmarek2, Michael Early2, 
MR Daniel2, Anne Hege2, Perry Cook1,2 

Princeton University 
1Department of Computer Science, 2Department of Music 

ABSTRACT 

A weekly seminar consisting of seven composers and one 
computer scientist was convened for the purpose of 
exploring questions surrounding how technology can 
support aspects of the computer music composition 
process. The composers were introduced to an existing 
interactive software system for creating new musical 
interfaces and compositions, which they used throughout 
the seminar. The group engaged in a user-centered design 
process to critically evaluate and improve this software. 
Through documentation of the experience and analysis of 
composers’ responses to a questionnaire following the 
seminar, we achieved a richer understanding of how 
technology can support composers’ modes of working and 
goals in the process of computer music interface design 
and composition. This work also resulted in an improved 
compositional software system and progress toward 
several new musical compositions and instruments. 

1. INTRODUCTION 

Computer music performance interfaces in which 
performer action is not coupled directly to sound reaction 
have been termed “composed instruments,” as the 
specification of how the sound and performer interact is a 
creative and intentional act of composition [13]. Studying 
interaction in computer music therefore frequently focuses 
on broadly understanding and characterizing the practical 
and musical consequences of (already-)composed 
instruments’ mediation of the performer-sound 
relationship.  

Our interest, however, lies in the process by which 
composers design new instruments and performance-time 
interactions: the process of composing the instrument. 
How do composers engage with software tools to create 
new musical instruments and compositions? What 
information and interactions are valuable to them in this 
process? How do they formulate, revise, and achieve their 
creative goals? How might we create and improve tools for 
making this process more efficient or more satisfactory? 

To begin to explore questions like these, we convened a 
weekly seminar of seven composers and one computer 
scientist. The composers, whose degree of computer 

programming expertise varied widely, were introduced to 
an existing software system, which they employed 
throughout the seminar to create new musical interfaces 
and compositions. The group engaged in a user-centered 
design process to critically evaluate and collaboratively 
improve the software. The experience was documented 
through notes of each meeting, emails on the seminar 
mailing list, and a written questionnaire that solicited each 
composer’s critical reflections after ten weeks of meetings. 
Outcomes of this work include an improved compositional 
and improvisational software system, modified and greatly 
expanded using suggestions and observations from the 
seminar; and progress towards several new musical pieces 
and instruments.  

In this paper, we draw on the experiences of the seven 
composers to come to an enriched understanding of how 
technology can support composers’ modes of working and 
goals in the process of computer music interface design 
and composition. In particular, we observed the following 
interface affordances to be important to the compositional 
process: supporting iterative exploration, privileging the 
gesture/sound relationship, providing access to both 
surprise and control, facilitating creation of complex 
systems, inviting play, and accommodating users with 
diverse backgrounds, skills, and goals. Our experiences 
underscore the mutuality of influence between the human 
and computer in the act of computer music composition, 
highlight how the choice of computer instrument mapping 
strategy or algorithm presents important compositional 
interaction implications, and raise the question of how 
different human-computer interaction requirements might 
arise from compositional goals different from those 
primarily observed in this study.  

2. BACKGROUND 

2.1. Technology and the composition process 

The study of computational support for creativity is a 
growing focus of research in human-computer interaction 
(HCI), which investigates questions of how technology can 
foster innovation and expression in domains from the arts 
to software design [14]. For example, recent work by 
Tsandilas et al. [15] employs an HCI approach in studying 



a new digital pen-based score annotation tool for music 
composition. The authors studied five composers 
interacting with the tool, and they involved the composers 
in a participatory design process to iteratively improve the 
tool. Such work explicitly studying technological support 
of the process of musical composition is rare.  

On the other hand, much more work focuses broadly on 
the topic of human-computer interaction in computer 
music performance.  Indeed, in comparison to work with 
acoustic instruments, interaction in computer music offers 
an explosion of new possibilities regarding all aspects of 
the performer-sound interaction, as the relationship of 
gesture to sound must be intentionally composed [13].  

One perspective for studying and supporting 
performance interaction involves he notion of a composed 
instrument incorporating a composed mapping—a function 
from input gesture to output sound that encodes the 
“essence” of an interface [9],[10]. Although the mapping 
paradigm of gestural interaction limits interactive 
possibilities to those most similar to an acoustic instrument 
[2], mapping provides a useful starting point for discussion 
and systems building. Several software systems including 
[1],[3],[18] have been constructed to support the process of 
creating (more-or-less) general-purpose mappings from 
gesture to sound.  

As Drummond [4] writes, “Interactive music systems 
are of course not ‘found objects’… Interactive systems 
require interaction to realize the compositional structures 
and potentials encoded in the system.” Composers’ 
writings offer valuable insights into the their practice in the 
process of composing the instrument [8]. A recent 
Organised Sound special issue [12] provides some 
excellent, broader discussion of the intersection of 
interaction and composition, including an analysis 
informed by the role of embodied cognition in interactive 
system design [16], and by an interrogation of the 
definition and scope of interaction in music [4]. In our 
work, we seek to make sense of the observed human-
computer interactions of a group of composers engaging in 
creative practice, and in the process improve a specific 
software tool. Our collaborative, practice-based approach 
to studying instrument composition provides a 
complementary perspective to this past work. 

2.2.  Generative mappings and the Wekinator  

Hunt and Wanderley [9] classify mapping strategies into 
explicit strategies that explicitly define the input-to-output 
relationships and generative strategies in which an 
algorithm such as a neural network generates the mapping 
function. At a high level, neural networks and other 
supervised learning algorithms generate a mapping 
function using a training dataset consisting of multiple 
(gesture, sound parameter) pairs. In training, the algorithm 
uses the training set to construct the mapping function, 
which is a model of the relationship between gestures and 

sounds in the training set. This model can then produce a 
sound in response to any new gesture. In reality, of course, 
the learning algorithm and model do not work on the 
gesture and sound themselves, but on the gesture as 
digitally represented by a vector of features (often gestural 
sensor values, such as accelerometer outputs or webcam 
pixel values, which may themselves be processed with 
smoothing, color tracking, etc.), and on the sound via 
numerical parameters to some synthesis algorithm or 
compositional system.  

The Wekinator is an existing open-source software 
“meta-instrument… which allows musicians, composers, 
and new instrument designers to interactively train and 
modify many standard machine learning algorithms in 
real-time” [7]. Like ESCHER [18], it is a modular system 
that allows users to experimentally generate and use 
mappings between arbitrary input gestural controllers and 
arbitrary synthesis systems. However, a primary intention 
of the system is to support real-time creation and 
exploration of mappings, and to do so using a supervised 
learning paradigm: the user may iteratively create training 
examples of (gestural feature, sound parameter) pairs, train 
the algorithms, evaluate the resulting models via hands-on 
experimentation and objective accuracy metrics, modify 
the training examples and algorithms, and repeat. It differs 
most from other machine learning mapping tools such as 
[1] and [3] in this emphasis on real-time interaction within 
a single, general-purpose interface.  

The Wekinator provides several built-in modules for 
extracting features from gestural inputs, including plug-
and-play support for human interface (HID) devices. Users 
may also employ either ChucK or Open Sound Control-
enabled environments to implement their own feature 
extractors and/or to use the parameters output by the 
trained models. The Wekinator supports the creation of 
composed instruments in the strict sense of [13], but it also 
allows for more complex performance-time interactions 
(e.g., parameters may affect an intelligent process, or the 
mapping may be dynamically modified at performance 
time, as in [7]). In this paper, we avoid a strict 
differentiation between composition, instrument building, 
and improvisation, and we use the term “mapping” simply 
to denote a function computed on input “features” to 
produce output “parameters” in real-time, without further 
assumptions regarding the source of the inputs or roles of 
the outputs within an interactive system. 

3. METHODOLOGY 

We held a seminar consisting of ten weekly, 2–3 hour 
meetings of 7 composers and 1 computer scientist (the 
organizer and first author). The Wekinator software was a 
focal point of the meetings and a foundation for the 
collaborative study: composers were asked to learn to use 
it, employ it however they found most interesting as a 
compositional tool, and collaborate with the computer 



scientist in a user-centered design process [17] to critique, 
improve, and test iterative revisions of the Wekinator. The 
participation of the composers was not otherwise 
constrained, and they were not obligated to produce a 
composition, instrument, or other artifact, nor were they 
graded or otherwise compensated.  

Participation was open and advertised to all composers 
at our institution. Of the 7 who chose to participate, 1 was 
a faculty member and 6 were graduate students; 4 were 
male, 3 were female. Their self-assessed programming 
expertise ranged from 1 (very low) to 4 (somewhat high) 
on a 5-point Likert-style scale (mean: 2.86). Six rated their 
prior machine learning knowledge as “very low”, and the 
seventh rated it as “somewhat low.” None had used 
machine learning or generative mapping strategies before 
in their compositions, for any purpose, though most had 
experience designing and using explicit mapping 
strategies. 

All meetings involved group discussion and time for 
individuals to experiment with the Wekinator on their own 
laptops, during which they shared their creations and 
solicited feedback and help from the group. The computer 
scientist verbally solicited feature requests and bug reports, 
and invited group discussion of possible improvements. 
Each week, she implemented the requested functionality 
into the Wekinator (as was feasible) and distributed an 
updated version to the composers before the following 
meeting, the beginning of which was spent demonstrating 
the updated software. In all, 8 such design iterations were 
completed. 

For each meeting, we recorded text minutes of the 
group’s activities, discussion topics, and specific 
questions, problem reports, and feature requests regarding 
the software. The group communicated via an e-mail list, 
and composers sometimes e-mailed and met with the 
organizer directly. After ten meetings, each composer 
completed an individual questionnaire soliciting reflective 
feedback and demographic information using 20 multi-part 
free response and Likert-style questions. These artifacts 
documenting the experience of the seminar participants 
form the basis of the following analysis. 

4. OBSERVATIONS 

4.1. Composition of instruments and gestural control 
interfaces 

After learning how to use the Wekinator, the composers 
chose to primarily employ it to create and explore new 
gestural control systems in which neural networks were 
employed to map from gestural features to sound synthesis 
parameters. With few exceptions, they focused on creating 
systems in which gestural state continuously drove real-
valued parameters of sound synthesis algorithms, as 
opposed to systems incorporating recognition of and 
response to discrete gesture events or categories. Input 

devices used include the laptop accelerometer, the Mad 
Catz Real World Golf Game controller, custom-built 
microcontroller and sensor systems, Wacom tablets, and 
other HID devices. Composers also experimented with a 
variety of synthesis environments and algorithms in both 
ChucK and Max/MSP. The most-often used synthesis 
algorithms were two physical models of imaginary 
instruments, each with over 10 parameters, most of which 
had complex relationships with each other and the 
perceived sound. The next most popular methods were 
granular sampling and synthesis. 

4.2. Hands-on exploration and experimentation 

Shneiderman [14] discusses the importance of exploration 
of alternatives in the creative process across many 
disciplines; in fact, his first design principle for creativity 
support tools is “Support exploratory search.” In our 
observations, composition and creation were indeed 
focused around interacting with the training set and 
training process to perform explorations of alternative 
mappings. One composer describes a typical approach: “I 
started by selecting exactly which variables I wanted to 
control on the synth side, and then created a few (two or 
three) presets that resulted in interesting sounds. I then 
trained the network various different ways to try and get 
the most expressive mapping of the input features.” In the 
questionnaire, all composers discussed the importance of 
exploring and evaluating a variety of sounds, gestures and 
mappings. When asked how they evaluated whether they 
liked a mapping, everyone replied that they played with it 
in real-time, experimenting with making various gestures 
while listening to the sonic response. Furthermore, 
composers iteratively explored by training the network, 
evaluating the mapping by playing with it, modifying some 
property of the system, re-training and re-evaluating. The 
most useful methods that composers found for improving 
mappings were adding more examples to an existing 
training set and then retraining in order to augment or 
refine the current mapping (6 had tried; mean usefulness 
score 2.3 out of 3), deleting the training set and building a 
new training set from scratch (5 tried; mean 2.8), changing 
the input features or controller (5 tried; mean 2.4), and 
changing the synthesis method (4 tried; mean 2.4). 
Composers rarely or never added training data manually or 
modified the neural network algorithm, although these 
tasks were possible in the GUI. 

4.3. What do composers value? 

In this section, we draw on composers’ feature requests, 
complaints, group discussions, and questionnaire responses 
to highlight recurring themes surrounding the interaction 
paradigms and interface qualities that composers most 
valued in the process of creating new instruments using the 
Wekinator. We also describe improvements made to the 
Wekinator through the user-centered design process. 



4.3.1. Privileging the gesture-sound relationship via 
physicality and abstraction 

When asked what they liked about creating mappings with 
the Wekinator and how they felt it was useful to their 
compositional practice, a common thread throughout 
composers’ responses was the privileging of the 
relationship between gesture and sound, both in 
composition and performance. One obvious way in which 
the Wekinator emphasizes physicality is the fact that the 
user generates training examples for the neural network by 
actually performing gestures in real-time. Training 
examples can be created one gesture at a time: the user sets 
the desired sound parameters in the GUI (Wekinator 
records these as the target output values for the training 
examples, and sends them to the synthesizer module 
producing sound), then the user instructs the Wekinator to 
record the vector of gestural input features generated as 
he/she performs the gesture. The user may also employ a 
dynamic “play-along” process for creating training 
examples [6], in which the Wekinator follows a user-
defined “score” to update the synthesis parameters over 
time: the user gestures along with the dynamic sounds, 
while the system continuously records each synchronous 
gestural feature vector and parameters pair as a new 
training example. 

Several people contrasted their previous experiences 
creating instruments that used explicit mappings coded in 
Max/MSP or Chuck, and remarked on how this affected 
composition for them. One wrote, “I find that I’ve been so 
overwhelmingly trained to think of these things in one-to-
one ways (uh, I want tilting forward to control volume, 
and, uh, tilting left/right to, uh, control.... pitch, yeah that’s 
it) that I basically want to retrain myself NOT to think that 
way anymore, and rather to privilege physical interactions 
with the interface and sonic sculpting on the synthesis end, 
and ask the Wekinator to connect them for me.” 

Composers frequently discussed the Wekinator’s 
abstraction of the mapping functions as being useful in 
focusing their attention on sound and gesture, and 
contrasted this to explicit mapping methods that drew their 
attention and effort to refining the details of the mapping 
functions that had minor or unpredictable relationships to 
the sound and movement. One wrote, “By thinking about 
the mapping mechanism… as a closed ‘black box’, 
Wekinator allowed me to explore the parameter space in a 
more intuitive and natural way. In the past when I have 
really focused on trying to create an expressive mapping 
between inputs and outputs, I ended up spending so much 
time and energy on the mappings themselves that they 
started to eclipse the actually sonic result.”  

Several people also commented on a prioritization of 
the gesture-sound relationship in the evaluation and 
performance of mappings after they were created. In 
discussing how they evaluate a given mapping, all users 
emphasized the importance of playing with it and getting a 

“feel” for it. This “feel” had particular implications for 
performance and composition: “They (the performers) can 
see a relationship between my control gestures and the 
sounds. For dancers, at least the ones I work with, this is 
really important as they want to have a sense of the 
musician being in it with them, ‘getting’ the movement, 
rather than just playing back canned sound that have no 
relationship to the movement of the moment.” One person 
reflected on the type of composition suggested by his use 
with the software: “I could imagine using the Wekinator 
for a piece where the instrument itself was the focal point, 
possibly some kind of concerto, or where there is an 
element of theatrics to the performance. I think that the 
gestural relationships that the Wekinator creates between 
the controller and the sound producer (synth) would be 
very interesting to highlight in a piece.”  

While users in general had positive experiences with 
this aspect of the Wekinator compared to previous 
mapping strategies, group discussion led to several 
software improvements to focus the training interaction 
even more tightly around the sound/gesture relationship. In 
particular, the play-along functionality was improved so 
that scores could be created and modified within the GUI, 
allowing the user to iteratively compose and audition 
dynamic sonic/physical gestures. We are currently 
implementing user-controlled temporal interpolation 
between parameter settings in a play-along score, so that 
play-along gestures can also respond to the temporal aspect 
of transitions in the sonic landscape. Additionally, we have 
added GUI support for computing “meta-features” from 
gestural inputs, so that the performer can incorporate speed 
and acceleration of gesture along with position as first-
order means of controlling sound. 

4.3.2. Reducing barriers to speed and ease of exploration 

Many composers expressed frustration at the difficulty and 
slowness of exploring mappings using previous tools; one 
composer who has been building new musical interfaces 
for over 10 years wrote, “Building these kinds of 
instruments requires an enormous amount of 
experimentation and play. There are simply way too many 
combinations of features and parameters to manually think 
about trying – too many decisions to make – and too many 
combinations that are useless. It’s a process that invariably 
takes way too much time; the ratio of time spent to 
satisfactory musical experiences is super high.” In contrast, 
composers frequently referenced the speed and ease of 
creating and exploring mappings using the Wekinator: “As 
I work mostly with improvisation, I found Wekinator’s 
ability to quickly map a number of input features to a 
potentially different number of output parameters very 
useful.”  

Group-initiated improvements to the Wekinator also 
often focused on streamlining the physical and cognitive 
processes of mapping creation. For example, foot pedal 



support was introduced to control the training process 
without hands. Composers using synthesis patches in 
Max/MSP indicated a disruption in workflow due to 
context switching from one application to another; as a 
result, we have augmented the OSC bindings between 
Wekinator GUI and the synthesis module to propagate 
state changes between the two environments.  

4.3.3. Providing access to surprise and discovery 

Composers strongly emphasized the creative benefits of 
being surprised by the sounds and by the sonic-physical 
gestures that resulted from the generated mappings. For 
example: “There is the potential of creating very 
expressive instruments using mappings from the 
Wekinator. In traditional circumstances (before the 
Wekinator) programmers might try to constrain the values 
in such a way that they’re always getting the results they 
wanted for whatever piece the instrument was being 
designed. Nothing wrong with that. But with Wekinator 
it’s possible to get the controller into an unanticipated 
configuration and get an unexpected sound. Such a sound 
might not have a place in the piece the composer is 
working on, but might if that instrument is used in another 
piece.” Another wrote, “There is simply no way I would be 
able to manually create the mappings that the Wekinator 
comes up with; being able to playfully explore a space that 
I’ve roughly mapped out, but that the Wekinator has 
provided the detail for, is inspiring.” 

In order to allow users to better make use of the new 
sounds they discovered, we added a “parameter palette” to 
the Wekinator. Now, at any time while playing with a 
mapping, a user can take a snapshot of the current 
synthesis parameters and add it to this palette. The user can 
later view the palette and set the synthesis parameters from 
any of the recorded snapshots, making it possible to add a 
new training example matching a gesture to this sound. Or, 
the user can play through the list of snapshots as a score 
for play-along learning, and optionally edit the ordering 
and durations of the snapshots in the score.  

4.3.4. Balancing discovery with control and constraint 

The ability to constrain and control the mapping functions 
was also very influential in composers’ evaluations of the 
system’s usefulness, and it drove many of their suggestions 
for improvement. Several composers developed a practice 
with the Wekinator in which they consciously manipulated 
the training process to create mappings with an appropriate 
balance of predictability and surprise. One common 
strategy was to decide on sonic and gestural boundaries of 
the compositional space (e.g., minimum and maximum 
parameter values and controller positions), then to create 
initial training examples that paired extreme synthesis 
parameter values with extreme gestures. After training the 
network, users played with the system to explore the 
sounds they found in between and outside the boundaries 

of these “anchor” examples. Several users employed the 
addition of training examples as a means to enforce 
predictability: “I try to add additional points in between the 
extremes, where I know what I want to be most 
predictable.”  

When some composers desired to exercise a finer 
degree of control over the behavior of individual 
parameters in response to gesture, while leaving the 
mapping of features to other parameters unchanged, we 
added checkboxes to the GUI to indicate whether the 
training examples currently being created were “active” for 
each parameter. By using one independent neural network 
per parameter, each of which might be trained on different 
sets, we were able to dynamically turn each training 
example “on or off” for each parameter. 

It was also important to several composers that they be 
able to restrict which features of the gestural inputs affect 
each output parameter, for example controlling 
perceptually separable parameters such as pitch and timbre 
using physically separable inputs, (see [11]) or even 
distinct input controllers. The Wekinator was therefore 
augmented with GUI support for the choice, configuration, 
and dynamic modification of feature-to-parameter 
relationships. This allowed for experimentation with one-
to-one, one-to-many, many-to-one, strategies characterized 
by [10] in the context of explicit mappings.  

Despite the above modifications, most composers found 
the Wekinator to offer unsatisfactory degrees of control for 
certain tasks. One in particular had simple but quite 
specific ideas about the nature of mappings that he wanted 
to create, for example assigning a linear relationship 
between a control gesture and vibrato speed of a physical 
model. He found the process of attempting to teach the 
Wekinator this relationship through examples frustrating 
and not wholly successful. An admitted “control freak,” he 
resigned himself to mappings that weren’t “completely 
‘correctly’ mapped according to my original plans… that 
doesn’t seem to be the strength of this.” Most composers 
indicated that, in general, they would choose other 
mapping strategies and tools to create very simple 
mappings that they knew they could explicitly code in a 
few lines, or for reliable triggers such as those easily 
created with MIDI foot pedals.  

4.3.5. Supporting creation of useful, complex mappings 

Several composers wrote that they valued the ease with 
which complex mappings could be created, and noted 
parallels between the degree of complexity and difficulty 
in Wekinator-created mappings and those in acoustic 
instruments. For example, “there seems to be a happy 
medium where there is linear, logical control, and more 
intuitive, unpredictable control [using the mapping]… For 
example when I play an acoustic string instrument, say a 
cello, I can predictably produce pitch by placing my finger 
at a certain point on the string. However this is still 



dependent on a number of other more subtle features 
(similar to things that have been incorporated into the 
blotar model [the synthesis algorithm being used]) like 
bow pressure, placement of the bow on the string, the 
angle of the bow, the movement of the finger holding 
down the string.  The interactions are not necessarily 
‘linear’ or obvious.  I think the combination of the two is 
what makes an acoustic instrument exciting, and the same 
seems true here.” Another composer wrote, “Like any 
good instrument, acoustic or electronic, when the 
Wekinator is trained well it provided enough ‘difficulty’ in 
playing that it really does engage the performer.  Once the 
training is over, and you really start to explore, it becomes 
a process of finding new sounds and spaces that the 
mapping has created and then trying to include those into 
your vocabulary of performing with the instrument.”  

4.3.6. An invitation to play 

“Play” was a common word in composers’ descriptions of 
how they interacted with the Wekinator and what they 
liked about it. “Play” and “playability” were important 
themes related to prioritizing gestural interaction, and in 
positively characterizing the tone of the interaction as 
collaborative, informal, and exploratory. According to one 
composer, “It feels like design software that lends itself to 
the imagining of ‘playful’ instrument to me. By ‘playful’ I 
mean both whimsical as well as embodied and outside the 
box.” According to another, “The way that the Wekinator 
becomes like a toy and collaborator makes it very 
appealing.”  

4.3.7. Attention to accessibility in a creative paradigm 

The broad range of composers’ proficiency in computer 
programming and use of the command line presented 
initial challenges. The initial version of the Wekinator 
required the system configuration (e.g., which synthesis 
module would be used) to be specified within a ChucK 
code file, which was then run using the OS X Terminal. 
These requirements effectively barred the Wekinator’s 
“invitation to play” from extending to the composers who 
were not comfortable experimenting with these tools. As a 
result, we created an optional subsystem within the 
Wekinator GUI for configuring and running ChucK. 

As all composers gained experience using the software, 
group and individual discussions revealed more subtle 
discrepancies in ways of thinking and speaking about 
technology and its role in composition, which have 
important implications for the usefulness of the software to 
diverse groups of users. The least subtle and most 
problematic of these surrounded technical language 
embedded in the GUI used by the computer scientist. The 
term “feature,” for example, is commonly used in machine 
learning as we have used it in this paper. However, 
“feature” can mean an aspect or even “selling point” of a 
piece of software, or a perceived aspect of a sound or 

composition. Multiple composers expressed frustration at 
confusing “features” and “parameters,” and this confusion 
was sometimes a barrier to interacting with the system and 
understanding its potential uses. While most composers 
focused their creative interaction with the system on 
modifying the training set, one composer expressed a 
disconnect between this approach to composition and her 
work: “I just don’t ever think ‘spread sheet’ or ‘data set’ 
when I’m creating work and this may be because my work 
is usually simultaneously conceptual and narrative.”  

4.4. Improved software and new compositions 

The participation of diverse composers led to practical 
improvements of the Wekinator, many of which had not 
been considered by the computer scientist. The updated 
version of the software is available for public download at 
http://code.google.com/p/wekinator/. We believe the 
Wekinator offers composers a novel and useful tool: 
reflecting on their experiences with the software after ten 
weeks, composers strongly indicated that the Wekinator 
allowed them to create more expressive mappings than 
other techniques (mean 4.5 on 5-point Likert scale) and 
that the Wekinator allowed them to create mappings more 
easily (mean 4.67). As of this time, one composer from the 
seminar has composed and recorded a complete work that 
incorporates the Wekinator in two of the performance 
interfaces, and several others are employing it in ongoing 
work on compositions and instruments.  

5. DISCUSSION AND FUTURE DIRECTIONS 

5.1. Training the user: Mutual influence and 
interaction 

Nearly all composers characterized their interaction with 
the Wekinator as more complex than an exercising of 
control over technology; the ways the software challenged 
and influenced them were important aspects of their 
experience as users. They often relied on the randomness 
and complexity offered by the learning algorithms to 
discover the existence of unknown and often inspiring 
locations in the sonic space of a synthesis algorithm and 
the sonic-gesture space of a mapping. Even though the 
Wekinator user is nominally in charge of the supervised 
learning “training” process, it is apparent that interaction 
with the system likewise trains the user. Through using the 
system, composers learned about what interaction 
strategies produced mappings that they liked (“At first I 
tried to single out each output parameter individually and 
train the system one at a time, although ultimately I found 
that it proved to be most useful when I didn’t try to micro-
manage the inputs/outputs, and just gave it a snapshot of 
all the features and then let the network sort itself out.”), 
and they learned that certain mapping strategies (such as 
enforcing a linear relationship between features and 
parameters) were hard to satisfactorily produce. As a 



result, their goals and subsequent interaction with the 
system often changed course. 

Viewing the Wekinator and other technologies for 
supporting composition as meta-instruments suggests a 
way to reconnect our analysis with the large body of work 
discussing interaction in performance, via considering 
interactions with the composition software through the lens 
of interactive performance paradigms and metaphors 
proposed by in the literature. Chadabe’s conversational 
metaphor for interaction [2] seems to be particularly 
appropriate to the interaction style we observed with the 
Wekinator. Software that supports other interaction 
models, such as his “sailing a ship in stormy waters,” [4] 
suggests yet another space of compositional styles and 
outcomes. 

5.2. Compositional interaction and mapping strategies 

In light of existing work categorizing mapping strategies as 
generative or explicit, many of our observations regarding 
interaction with the Wekinator appear at first glance to be 
rooted in the Wekinator’s nature as a generative mapping 
creation system, in which the desired shape of the mapping 
is implicitly encoded in the training examples. Generating 
mappings from training examples inherently supports an 
embodied and enactive [19] approach to the mapping 
specification processes, in that gestures can be used to 
create the training examples. The specification of mapping 
via example also enables many low-level details to be 
abstracted away, speeding up the mapping exploration 
process, facilitating use by non-programmers, and freeing 
the composer to focus on the creative process. The use of 
neural networks, which are capable of introducing great 
nonlinearities into the learned functions, also contributes to 
serendipitous discovery and efficient production of 
complex mappings. Overall, we conclude that many 
qualities of the Wekinator that are most helpful in 
compositional interaction are well supported by properties 
of the generative mapping strategy. However, a user who 
has a specific notion of the mathematical relationship 
between gestural features and sound parameters may be 
frustrated by the difficulty and inefficiency of implicitly 
encoding this mapping via training examples; it is 
therefore also obvious that the suitability of example-
driven mapping generation is contingent on users’ 
compositional goals. 

On closer examination, one can imagine interfaces that 
do not enforce a clear dichotomy between example-driving 
and function definition-driven creation, supported by 
underlying algorithms that are difficult to mathematically 
categorize as purely generative or explicit.  For example, 
simple linear or polynomial regression algorithms could be 
embedded in an interface that allows the user to 
dynamically switch between supplying examples and 
explicitly editing equations.  

5.3. Exploratory and objective-oriented activities 

Our last point of discussion arises out of observations of 
how composers did not use the Wekinator, namely in the 
construction of gesture event detection or classification 
systems. Supervised learning has a long history of 
application to gesture recognition problems (e.g. [5]), and 
the Wekinator includes several common and powerful 
classification algorithms that could be used for these 
purposes. One composer attempted to use the system in 
this manner  (for drum stroke recognition) for several 
weeks at the beginning of the seminar, but he ultimately 
chose to focus instead on creating continuous timbral 
mappings with other controllers. 

One explanation for this observation is that the 
Wekinator currently offers better support for exploratory, 
open-ended mapping creation than it does for creating 
models that solve an objective problem. In particular, an 
objective-oriented approach prioritizes predictability 
heavily and discovery not at all: a user is probably not 
interested in being surprised by a drum stroke labeler that 
produces the wrong label. Additional infrastructure to 
enforce predictability by facilitating the training of more 
accurate models might therefore be appropriate, for 
example a graphical interface to perform fine-grained edits 
of the training data to annotate onsets or remove noise, or 
interfaces for refining the selection and post-processing of 
the features. Work along the lines of supporting feature 
selection and algorithm parameter selection might take 
inspiration from Weka itself [20], the very popular 
graphical toolkit for supporting machine learning 
experimentation in more non-realtime domains. Integration 
of more standard features used in audio and gesture 
analysis in music information retrieval might also be 
helpful. 

However, some composers tempered this proposal with 
an alternative explanation: they had not yet had the chance 
to learn as much about the Wekinator’s functionality 
supporting gesture classification as they would like. 
Clearly, further work might be done to study composers 
interacting with the software to accomplish more 
objective-oriented tasks, so we can better understand 
interaction requirements and user learning curve in this 
problem space. 

6.  CONCLUSIONS 

Usefulness and accessibility in a music composition 
system may be very broadly defined and difficult to 
measure. As we have discussed, qualities of interaction in 
the process of composition have both striking and subtle 
consequences for the type of composition produced and the 
composer’s satisfaction with the process. These 
consequences stem not just from limits on the space of 
compositions that are technologically feasible using an 
interface, but on the compositional possibilities that are 



suggested to the user and how the software best enables the 
composer to navigate through and refine these possibilities, 
as expressed through the GUI, underlying algorithms, and 
even the language and metaphors embedded in a system.   

Our experience applying a human-computer interaction 
approach to investigating how technology can support 
computer music composition has highlighted these 
challenges but also enriched our understanding of the new 
musical instrument design process in spite of them. We 
have observed and discussed several properties of 
interaction that are valued by composers engaging in this 
process, and we have drawn on our experiences to suggest 
new ways of framing interaction, mapping strategies, and 
compositional goals. Our collaboration has also led to 
improvements in the Wekinator software, which several 
composers continue to employ in their work.  

7. ACKNOWLEDGEMENTS 

This material is based upon work supported under a 
National Science Foundation Graduate Research 
Fellowship. This work is also supported by a John D. and 
Catherine T. MacArthur Foundation Digital Media and 
Learning grant. 

8. REFERENCES 

[1] Bevilacqua, F., R. Müller, and N. Schnell. “MnM: A 
Max/MSP mapping toolbox,” Proc. NIME, 2005, pp. 
85–88. 

[2] Chadabe, J. “The limitations of mapping as a 
structural descriptive in electronic musical 
instruments,” Proc. NIME, 2002. 

[3] Cont, A., T. Coduys, and C. Henry, “Real-time 
gesture mapping in Pd environment using neural 
networks,” Proc. NIME, 2004, pp. 39–42. 

[4] Drummond, J. “Understanding interactive systems”, 
Organised Sound, vol. 14, no. 2, pp. 124–33, 2009. 

[5] Fels, S. S. and G. E. Hinton. “Glove-Talk: A neural 
network interface between a data-glove and a speech 
synthesizer,” IEEE Trans. on Neural Networks, vol. 
4, 1993. 

[6] Fiebrink, R., P. R. Cook, and D. Trueman. "Play-
along mapping of musical controllers,” Proc. ICMC, 
2009.  

[7] Fiebrink, R., D. Trueman, and P. R. Cook. "A meta-
instrument for interactive, on-the-fly machine 
learning," Proc. NIME, 2009. 

[8] Hahn, T., and C. Bahn. “Pikapika—The collaborative 
composition of an interactive sonic character,” 
Organised sound vol. 7, no. 3, pp. 229–238, 2003. 

[9] Hunt, A., and M. M. Wanderley, “Mapping performer 
parameters to synthesis engines,” Organised Sound, 
vol. 7, pp. 97–108, 2002. 

[10] Hunt, A., M. M. Wanderley, and M. Paradis. “The 
importance of parameter mapping in electronic 
instrument design,” Proc. NIME, 2002. 

[11] Jacob, R., L. Sibert, D. McFarlane, and M. Mullen, 
Jr. “Integrality and separability of input devices,” 
Proc. ACM TOCHI, vol. 1., no. 1., pp. 3–26, 1994. 

[12] Paine, G., Ed. Organised Sound, vol. 14, no. 2, pp 
121–123, 2009. 

[13] Schnell, N., and M. Battier. “Introducing composed 
instruments, technical and musicological 
implications,” Proc. NIME, 2002. 

[14] Shneiderman, B. “Creativity support tools: 
Accelerating discovery and innovation.” Comm. ACM 
vol. 50, no. 12, pp. 20–32, Dec. 2007. 

[15] Tsandilas, T., Letondal, C., and Mackay, W. E. 2009. 
“Musink: Composing music through augmented 
drawing,” Proc. ACM CHI 2009, pp. 819–828. 

[16] Van Nort, D. “Instrumental listening: Sonic gesture 
as design principle,” Organised sound, vol. 14, no. 2, 
2009, pp. 177–187. 

[17] Vredenburg, K., J. Mao, P. W. Smith, and T. Carey. 
“A survey of user-centered design practice,” Proc. 
SIGCHI  2002, pp. 471–478. 

[18] Wanderley, M. M., N. Schnell, and J. Rovan. 
“ESCHER: Modeling and performing composed 
instruments in real-time,” IEEE Conf. on Systems, 
Man, and Cybernetics, 1998, vol. 2, pp. 1080–1084. 

[19] Wessel, D. “An Enactive Approach to Computer 
Music Performance,” Le Feedback dans la Creation 
Musical, Y. Orlarey, Ed., Lyon, France: Studio 
Gramme, 2006, pp. 93–98.   

[20] Witten, I., and E. Frank, Data Mining: Practical 
Machine Learning Tools and Techniques, 2nd ed. San 
Francisco: Morgan Kaufmann, 2005.

 


